How to solve: Probabilistic methods in
computer science

Patrik Znidarsic

Compiled December 14, 2025

1 Probability

The following probability distributions could prove useful:

Name PMF Expected value Variance
Geom(p) (1—p)F'p pt =
Bin(n,p) (x)p*(1 - p)"~* np np(1 —p)

Po(\) AT A A

We know some basic tricks for computing with the expected value:

e Definition:

E(f(X)) =) f(k)P(X = k).
k
o Linearity: E(aX 4+ 0Y) = aE(X) + bE(Y) for any a,b € R and random variables
X, Y.
e E(X -Y)=EX)E(®Y) if X,Y are independent.
e Markov’s inequality: if X > 0, then for all a > 0,

BX)

P(X >a) <
(X za)< =

Additionally, remember the union bound for probability:
P (U DZ) <> P(Dy).

Equality holds if the events D; are pairwise disjoint.

The HARMONIC NUMBERS H,, are defined as

"1
i=1

We have H,, <1+ logn for all n.

1.1 Confusion

Sometimes, the source of probability is questionable. Consider the following example:
we're given a trinary tree with each leaf assigned a (deterministic, but unknown) 0/1
value. The other nodes of the tree are assigned their value by a majority vote of their
children. We wish to determine the value of the root node in sublinear time with a
randomized algorithm.

The solution is that for each node, we check two of its children randomly. If we’re lucky,
they’ll have the same value, so we won’t need to compute the third child. There is
nothing random about the tree; it is only the steps that the algorithm takes which are
randomized. We therefore cannot compute directly the probability that we select two
children with an equal value (that depends on the values of the children), but we can
bound it. If we consider the cases for what the children could be (000, 001, 011, 111 up
to permutation), then we see that the probability in question is at most 1/3; from this,
we can compute a bound for the expected value of visited leaves.

2 Complexity classes

We can split randomized algorithms into two types: LAS VEGAS algorithms always
return the correct answer, but its running time is a random variable. A MONTE CARLO
algorithm on the other hand can return an incorrect answer. Monte Carlo algorithms
for a decision problem 7 can be further split into different types:

e One-sided error:

— Type 1: If w € 7, then we return “yes” with probability > %. If w ¢ 7, then
return “no” with probability 1.

— Type 2: The opposite.

o Two-sided error: Type 3: If w € m, then return “yes” with probability > %. If

w ¢ 7, then return “no” with probability > %

Note that % is an arbitrary constant; for types 1 and 2, anything above 0 would work,
and for type 3, anything above % Based on this classification, we define the following
complexity classes:

e RP: decision problems for which there exists a Monte Carlo algorithm of type 1
with polynomial expected time.

e co-RP: decision problems for which there exists a Monte Carlo algorithm of type
2 with polynomial expected time.

e BPP: decision problems for which there exists a Monte Carlo algorithm of type 3
with polynomial expected time.

e ZPP: decision problems for which there exists a Las Vegas algorithm with polyno-
mial expected time.

We’ve shown that m € ZPP if and only if there exists a randomized algorithm M for 7
which finishes in polynomial time, and which either returns the correct answer or, with
probability at most %, “Don’t know.” Additionally, we have ZPP = RP N co-RP.

Define BPP(p) as BPP, except that we require the error probability to be at most 1 —p,
so that BPP = BPP(2). Then it holds that BPP = BPP(p) for any p € (,1).

3 Bounding probabilities

3.1 General bounds

Remember Markov’s inequality; if X > 0 and a > 0, then

E(X)

P(X >a) <
a

Taking a = 1 gives us the FIRST MOMENT METHOD
P(X >0) < E(X).

A similar bound is the SECOND MOMENT METHOD

var(X)
= BEXO?

Note that the last two bounds only work if X is integer-valued (and positive).
We can also use Chebyshev’s bound: If X has a finite variance o2 and expected value
1, then
1
P(IX —pu| > < =
(X =4l 2 00) < —
for any a > 0. Or alternatively:

0.2

P(X —pl > a) < 7.

3.2 Chernoff bounds

Theorem 3.1 (Chernoff). Let X1, Xo, ..., X,, be mutually independent random variables
taking values 0 and 1. Let p; be the probability that X; = 1. Define X = >, X; and
pw=FE(X)=p1+--+pn. Foreach s € (0,1) we have

« P(X —p>dp) < exp(—pd?/3),

« P(u—X >du) < exp(—pd*/3),
o P(IX —p| > 0p) < 2exp(—pd?/3).

The theorem can be used to bound probabilities of the form P(X 2 C) for some C. First,
write X as a sum of mutually independent Bernoulli random variables (they are usually
the same, but they don’t have to be) and compute E(X). Then, take d = C/E(X) — 1
and plug it into the theorem. Depending on which bound you want, you might need to
use either the first or second assertion.

3.3 (e, d)-approximations

We say that a randomized algorithm is an (e, d)-APPROXIMATION for V' if the for the
output X of the algorithm, the following holds:

P(X -V|<eV)>1-06.

Using Chernoff’s bounds, we’ve shown that if ¥ = % Yo, Y is a sum of mutually
independent and identically distributed Bernoulli random variables with E(Y;) = p,
then P(|Y —u| <ep)>1-4if

> 310g(2/5).

3.4 Polynomials

Sometimes, we can describe a randomized algorithm as if it is either implicitly or explic-
itly evaluating a certain polynomial at random values. The following theorem is helpful
in the analysis of such algorithms.

Theorem 3.2 (Schwarz, Zippel). Let p(x1,...,x,) be a polynomial in Flxy,..., x,] of
degree d > 0. Let S C F be a finite set. If ri,...,r, € S are selected uniformly at
random, then

P(p(r1,...,mn) =0) < i

5]

Usually, it is easy to find a polynomial to check if two things — sets of numbers, string,
etc. are equal. We somehow set these things to be roots of two polynomials, then
evaluate them many times in random points. If all evaluations are the same, report
that the things are equal; otherwise, they are different. We can then use the theorem
to compute the probability that we report incorrectly, or determine how many times
we need to repeat the experiment to get the probability below a certain bound. Useful
polynomials are products of monomials, sums of a;x?, or determinants of matrices.

4 Random graphs

We've defined a random graph G(n, p) as a graph on vertices {1,2,...,n} for which each
pair {i,j} of numbers is an edge with probability p. For a fixed p, these graphs tend to
gain connectivity properties as n — oo. For example, taking an arbitrary m, the graph
will be m-connected with high probability for any large enough n.

We say that a random graph has property P ALMOST SURELY if the probability that
Gnp has this property converges to 1 as n — oo. Here, p can depend on n if we so
choose.

5 Markov chains

Definition 5.1. A MARKOV CHAIN is an infinite sequence Xg, X1, Xo,... of random
variables with values in a finite set € such that for all ¢,

P(Xip1 =1 | Xy =it,..., Xo=10) = P(Xpy1 =1 | Xy = i)

and for any t,t/, P(Xy11 =1 | Xy =j) = P(Xpy1 =1 | Xp = 7).

The transition from X; to X;;1 is given by a transition matrix P = [p;;];;, where
pij = P(Xi41 = j | Xi =1). We say that a row-vector (distribution) = is stationary if
m=mP.

Define the hitting time h;; for i — j as the expected number of steps required to reach
state j, starting from state 7.

With G p, we denote the directed graph representing P, i.e. the graph on € with edges
i — j whenever p;; > 0. We say that the Markov chain is STRONGLY CONNECTED if
Gp is strongly connected. The chain is APERIODIC if the greatest common divisor of the
length of all closed walks in Gp is 1.

Theorem 5.2. Consider a strongly connected Markov chain. Then
o there exists a unique stationary distribution m = (7;)icq,
o for everyi €, hy = 7%-7
e foralli e,
N(i,t,q0)

lim 90
t—00 t

where N(i,t,qo) is the number of visits to ¢ in t steps if Xg is selected according
to distribution qq,

e If Gp is aperiodic, then lim qo P! = 7 for any distribution qq.

6 Examples

Some of the examples of randomized algorithms covered in lectures are listed here, along
with their properties

6.1 Minimum cut

Remember that a cut §(U) is the set of edges from U to V \ U. If we’re looking for a
minimum cut, we’re interested in |§(U)|, not |U]|.

Proposition 6.1. Algorithm[]] returns a minimum cut with probability at least 2/n(n+1).

Algorithm 1 RandMinCut

Go=G and 7 =0.

while |V (G;)| > 2 do
Let e; be a random edge of G;.
Contract edge e; to get Gi+1 = G;/e;, preserving parallel edges.
1 =1+ 1.

end while

Let u,v be the two vertices of Gj;.

Define U as the set of all vertices merged to wu.
Return §(U).

6.2 Area estimate

Let By, ..., By, be some rectangles in the plane. We wish to estimate the area of their
union with an (e, d)-approximation. To do this, define

R; =B\ JB;.
7<i
Then the area of the union of B; is equal to the sum of the areas of R;, so we only need
to compute those. We will sample from UZ R;. First, select a random index a such that

| Bil
2. |1Bj]
Then take a random point in B; (uniformly) and check if it is in R;. Count the number
of hits of R;, then estimate

Pla=1i)=

number of tries

Us
i
To get an (e, §)-approximation, we need

log(2
number of tries > 3og(;€(2/5) Z | Bi] -

number of hits
i

This algorithm can be easily adapted to compute the hypervolume of a union of hyper-
rectangles.

Algorithm 2 Area estimate

et 310g(2/6)
0g
=52 |Bil.
Let y =0
fori=1,...,k do
Choose a € {1,...,n} with

Choose p € B, uniformly at random
ifp¢gd BiU...UB,_; then
Increment y
end if
end for
Return ¥ >~ | B

6.3 DNF counting

A formula F in CNF is not satisfiable if and only if its negation —=F (in DNF) has 2"
solutions. We have an (g, d)-approximation for this number of solutions.

Let F = C1V...VCy, where C; = l{A.. ./\l}%i and l; are literals. Define ¢(C;) to be the set
of n-tuples (r1,...,r,) € 2" for which C;(r1,...,r,) = T. Then take ¢(C;) = {i} x¢(C)).
Algorithm [3| gives an (e, §)-approximation of the number of solutions for F'.

Algorithm 3 DNF counting

Let £ =0
Set 2

m = {gglog@/é)-‘
for:=1,...,m do

Choose (i,a) € U§:1 ¢(C;) uniformly at random
if (’i, a) ¢ qE(Cl) u...u (Z)(Cz—1> then
Increment x
end if
end for

Return £ %" 1o(C;)|

m

6.4 Rand 2-SAT

Consider the 2-SAT problem, where we have boolean variables x1,...,x, and clauses
Cy,...,C,, of the form C; = li \Y l%, where lé- are literals. We wish to find an assignment
for the variables x; such that all clauses will be satisfied. The problem can actually
be solved deterministically in polynomial time, but we will still consider a randomized
algorithm.

Taking k = 8n?, algorithm ?? will return the correct answer (whether the problem is
satisfiable or not) with probability at least % In analyzing the algorithm, we define a
Markov chain in the following way: Let B* be some satisfying assignment. Then an
assignment B is in state Vj if exactly j of its values are equal to those values in B*.

With some simple but not straightforward though, we can see that in each step of the
algorithm, the probability that we change to a higher state is at least %, as in B*,
there are precisely three possibilities for what the two variables in question could have
assigned. We can then compute that the expected number of steps to reach V;, is < 2n?,

so we can conclude with Markov’s inequality.

Algorithm 4 Rand 2-SAT

Choose arbitrary By = (b1, ...,b,) € 2"
Let i =0
for j=1,...,k do
if B; satisfies C1 A ... A C,, then
Return “yes”
else
Choose some Cj that is false with B;
Choose a random variable z, in C}
Copy B; to Bjy1, but switch the value of z,
end if
Increment ¢
end for
Return “no”

	Probability
	Confusion

	Complexity classes
	Bounding probabilities
	General bounds
	Chernoff bounds
	(,)-approximations
	Polynomials

	Random graphs
	Markov chains
	Examples
	Minimum cut
	Area estimate
	DNF counting
	Rand 2-SAT

