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1 Matchings
We define the following:

• α(G) is the maximum cardinality of an independent set,

• β(G) is the maximum cardinality of a vertex cover (subset T ⊆ V which covers all
edges),

• α′(G) is the cardinality of the largest matching in G,

• β′(G) is the maximum cardinality of an edge cover.

We note the following easy relations:

α(G) + β(G) = n(G) α′(G) ≤ β(G)

α′(G) ≤ β′(G) α(G) ≤ β′(G)

Theorem 1.1 (Gallai). If δ(G) ≥ 1, then α′(G) + β′(G) = n(G).

There is much we can say about matchings. Let M be a matching in G. We say that a
path P is an M-augmenting path if it alternates between edges in M and in M , and if
the end vertices are not covered by M . It is worth noting that there is an M -augmenting
path if and only if M is not a maximum matching.

Theorem 1.2 (Tutte). A graph G has a perfect matching if and only if Tutte’s condition
holds, so if for any S ⊆ V , we have |S| > o(G − S), where o(G − S) is the number of
odd components in G− S.

This is a special case of the Berge-Tutte formula

α′(G) =
1

2

(
n− max

S⊆V
(o(G− S)− |S|)

)
.
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1.1 Bipartite graphs
Theorem 1.3 (König). Let G be a bipartite graph. Then α′(G) = β(G). Additionally, if
M is a matching in G and there is no M -augmenting path, M is a maximum matching.

As a corollary, if G is bipartite, then α(G) = β′(G). We can say more about bipartite
graphs, as the next theorem states.

Theorem 1.4 (Hall). If G is bipartite with partite classes A,B, then there exists a
matching that covers A if and only if Hall’s condition holds for A, so if for every S ⊆ A,
|S| ≤ |N(S)|.

So in a bipartite graph, there is a perfect matching if and only if |A| = |B| and Hall’s
condition holds. Also,

α′(G) = |A| − max
S⊆A

(|S| − |N(S)|).

We may also say the following.

Theorem 1.5. If G is a regular bipartite graph, then G has a perfect matching.

1.2 Factors
A k-factor is a k-regular spanning subgraph (so a k-regular subgraph which contains
all vertices). Note that a 1-factor corresponds to a perfect matching.

Theorem 1.6 (Petersen). Every bridgeless cubic graph has a 1-factor.

We also have the following results about k-regular graphs.

Theorem 1.7. If G is a k-regular graph for an even k, then G has a 2-factor.

Theorem 1.8. If G is a k-regular bipartite graph, then G can be decomposed into
1-factors.

2 Connectivity
The (vertex) connectivity of a graph G is the minimum number of vertices S such that
G − S is either isomorphic to K1 or is disconnected. We denote it by κ(G). Note that
κ(G) ≤ δ(G) and κ(G) ≤ β(G). Similarly, we can define the edge-connectivity number
κ′(G) as the minimum number of edges F such that G− F is disconnected. If G has at
least 2 vertices, then κ(G) ≤ κ′(G) ≤ δ(G).

We know that κ(Kn) = n− 1 and κ(Ka,b) = min{a, b}.

If we have a k-connected graph, then we may build new graphs with the following result.

Theorem 2.1 (expansion lemma). If G is a k-connected graph and we add a new vertex
v and k incident edges to the graph, then we obtain a k-connected graph.
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We have several results about 2-connected and 2-edge-connected graphs.

Theorem 2.2 (Whitney). If G is a 2-connected graph, then for every u, v ∈ V (G), there
are two internally disjoint u, v-paths. The converse also holds.

Proposition 2.3 (subdivision lemma). Suppose G′ is obtained from G by subdividing an
edge uv ∈ E(G) with a vertex w. Then G is 2-connected if and only if G′ is 2-connected.

An (open) ear decomposition of G is a sequence P0, P1, . . . , Pk, where P0 is a cycle in G
and every other Pi is an ear in the graph Gi = P0∪P1∪ . . .∪Pi. We also require Gk = G.
Here, an ear is a path where all internal vertices are of degree 2, but end vertices are of
degree at least 3.

Theorem 2.4. A graph G is 2-connected if and only if it has an ear decomposition.

Similarly, we can define a closed ear as a cycle in which all but one vertex have degree
2, with the exceptional vertex having degree at least 4. A closed ear decomposition then
is a sequence P0, P1, . . . , Pk where Pi is either an open or closed ear in Gi (defined as
before), and Gk = G.

Theorem 2.5. A graph G is 2-edge-connected if and only if it has a closed ear decom-
position.

Theorem 2.6 (Robbins). An undirected graph G is 2-edge-connected if and only if it
has a strong orientation, so if we can choose the orientation of each edge in such a way
that we get a strongly connected digraph.

A set S ⊆ V (G) is an x, y-cut if x and y belong to different components in G − S.
We label the minimum size of such a cut with κG(x, y). We also define λG(x, y) as
the maximum number of internally vertex-disjoint x, y-paths in G. We then have the
following result.

Theorem 2.7 (Menger’s theorem for vertex cuts). If x and y are nonadjacent vertices
in G, then κG(x, y) = λG(x, y).

We can also define an x, y-edge cut as an edge set R such that G − R is disconnected
and x and y are in different components. The minimum size of such a set is denoted by
κ′G(x, y). Also, the maximum number of edge-disjoint x, y-paths is denoted by λ′

G(x, y).

Theorem 2.8 (Menger’s theorem for edge cuts). Let x, y ∈ V (G). Then κ′G(x, y) =
λ′
G(x, y).

3 Coloring
The chromatic number of G is the minimum number of colors in a proper coloring of G.
It is denoted by χ(G). We can remark that in any graph, the following holds:

ω(G) ≤ χ(G) ≤ ∆(G) + 1, χ(G) ≥ n(G)

α(G)
.
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We can use the greedy coloring algorithm to find a proper coloring of a graph, but
depending on the choice of vertex order, the result may be arbitrarily bad. A slightly
better idea than an arbitrary order is to order vertices by their degrees, decreasing. We
then find

χ(G) ≤ 1 + max
i=1,...,n

{min{di, i− 1}}.

We gave a higher bound χ(G) ≤ ∆(G) + 1, but we can improve it slightly.

Theorem 3.1 (Brooks). If G is connected and not a complete graph or odd cycle, then
χ(G) ≤ ∆(G).

We also gave a lower bound of ω(G), which is sharp, but the difference between χ and
ω can be arbitrarily large, as can be shown from the following.

Theorem 3.2 (Mycielski’s construction). If G is a graph with at least one edge, then
χ(M(G)) = χ(G) + 1 and ω(M(G)) = ω(G), where M(G) is a graph derived from G by
the following construction:

• label the vertices of G as v1, . . . , vn,

• create n+ 1 new vertices u1, . . . , un, z,

• add connections uivj for all pairs vivj ∈ E(G),

• add connections uiz for all i.

A graph is chordal if there is no induced subgraph isomorphic to a cycle of size ≥ 4.
In a chordal graph, χ(G) = ω(G).

Theorem 3.3. A graph G is chordal if and only if there is a simplicial elimination
ordering of the vertices of G, so if there exists an ordering v1, v2, . . . , vn such that the
closed neighbourhood of vi in G− {v1, . . . , vi−1} is a clique.

A graph G is perfect if χ(H) = ω(H) holds for every induced subgraph H of G. All
chordal graphs are perfect, as are bipartite graphs. We also know that the line graph of
a bipartite graph is perfect.

Theorem 3.4 (Perfect graph theorem). A graph is perfect if and only if its complement
is perfect.

There is also a stronger result:

Theorem 3.5 (Strong perfect graph theorem). A graph is perfect if and only if neither
it nor its complement have an induced cycle of size 5 or greater.

3.1 Edge coloring
The edge colour number χ′(G) is the smallest number of colors in a proper edge coloring.
By Vizing’s theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for any graph G.

Proposition 3.6. If G is bipartite, χ′(G) = ∆(G).
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4 Planar graphs
Simply put, a graph is planar if you can draw it on a plane without edges intersecting.
If we have a plane graph (that is, a planar graph which is embedded into the plane), we
can form a dual graph by switching the role of vertices and faces, with two former faces
being connected once for each component of their common boundary. Dual graphs are
always connected, and a double dual of a connected plane graph is isomorphic to the
original.

The length of a face is the number of edges along a walk at the face’s boundary, where
we count an edge twice if we must go through it twice. We denote the length by l(F ).
In any plane graph, ∑

F face
l(F ) = 2m(G).

Theorem 4.1. Let G be a plane graph. Then the following are equivalent:

• G is bipartite,

• every face of G has an even length,

• G∗ is Eulerian (connected and all vertices are of even degree).

A planar graph is outerplanar if there is an embedding in which all vertices are on the
boundary of the outside face. It turns out that a simple outerplanar graph has δ(G) ≤ 2.

Theorem 4.2 (Euler). If G is a plane graph, then n(G) + f(G)−m(G) = 2.

As an easy corollary, in a planar graph, m(G) ≤ 3n(G)− 6.

Theorem 4.3 (Kuratowski). A graph is planar if and only if it contains no Kuratowski
subgraph (a subgraph which is a subdivision of K3,3 or K5).

Theorem 4.4 (Wagner). A graph G is planar if and only if neither K5 nor K3,3 are
minors of G (so if we cannot obtain either by deleting or contracting edges of G).

Theorem 4.5 (four-colour theorem). If G is planar, then χ(G) ≤ 4.
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